
Günther Noack
blog.gnoack.org

2022-10-05

Go-Landlock

This slide deck: https://blog.gnoack.org/talks/go-landlock

https://blog.gnoack.org/talks/go-landlock

High level overview of an attack

Attacker
Attacked
process

Ambient access to various resources

SSH keys Cookie files

Bank
documents

Love letters
Git repos

gains
unauthorized
control over

Let’s limit this
ambient access!

Show of hands!

● Who writes software that runs in a container? (docker, k8s, …)
● Who writes software that runs outside a container?
● Who has tried to sandbox their software?
● Why not?

Limiting access is too hard with existing solutions!

Cost

Benefit

Idea 1: Make it so simple that everyone can do it

Cost

Benefit

Idea 2: Make it part of program initialization

Initialization phase
(flag parsing, open
necessary files and

sockets)

Restrict own
access (drop
permissions)

Start
processing
untrusted

input

These ideas are not new

● OpenBSD: pledge() and unveil()

int pledge(const char *promises, const char *execpromises);
int unveil(const char *path, const char *permissions);

Very lightweight to use from C, a lot of OpenBSD programs are “pledged”

● FreeBSD: Capsicum
○ A more full-fledged capability-passing security model
○ Removes all access to global namespaces

Unprivileged sandboxing on Linux

…is otherwise very hard to use

● Seccomp-BPF: System call filter in bytecode language
● User namespaces + Mount namespaces and other namespaces

(there are more detailed slides on these at the end, if needed)

How to use Go-Landlock

Architecture

Userspace
Go program

Linux kernel

System calls

Landlock
Linux Security
Module

System
call impl

Check
whether
permitted

Go-landlock library

Enable
Landlock for
the calling

thread

Initialization

System
call impl

Drop rights Process untrusted input

Step 1: Make sure your Linux kernel supports Landlock

● Needs to be (a) compiled into kernel and (b) enabled at boot time with
lsm=landlock boot parameter (or by default with CONFIG_LSM)

● Check whether you already have it enabled:
gnoack:~$ cat /sys/kernel/security/lsm
Capability,landlock,lockdown,yama,bpf

● Now supported by default in:
○ Alpine Linux
○ Arch Linux
○ chromeOS (including for Linux 5.10)
○ Debian Sid (testing)
○ Fedora 35
○ Ubuntu 20.04 LTS (source)

(source)

https://lore.kernel.org/landlock/441bd1cd-03fd-8e30-c370-3d0f0263d564@digikod.net/
https://docs.kernel.org/userspace-api/landlock.html#kernel-support

Step 2: State what file accesses you are going to do!

err := landlock.V2.BestEffort().RestrictPaths(

 landlock.RODirs("/usr", "/bin"),

 landlock.RWDirs("/tmp"),

)

Use the best set of Landlock features
available on the current kernel

Files we need to read*

Files we need to write*

Use the highest Landlock ABI version
you can, increase it opportunistically

* access can be made more granular if required

Example: Image converter

func main() {
if err := landlock.V2.BestEffort().RestrictPaths(); err != nil {

log.Fatal("Could not enable Landlock:", err)
}

imgData, _, err := image.Decode(os.Stdin)
if err != nil {

log.Fatal("Could not read input:", err)
}

if err := png.Encode(os.Stdout, imgData); err != nil {
log.Fatal("Could not write output:", err)

}
}

https://github.com/landlock-lsm/go-landlock/blob/main/examples/convert/main.go

Drop access
rights

Process
untrusted input

https://github.com/landlock-lsm/go-landlock/blob/main/examples/convert/main.go

Example: Wiki software (simplified)

func main() {
flag.Parse()

d := diskv.New(diskv.Options{BasePath: *storeDir})
http.Handle("/", &ukuleleweb.PageHandler{MainPage: *mainPage, D: d})

s := http.Server{}
l, err := net.Listen(*listenNet, *listenAddr)
if err != nil { log.Fatalf("net.Listen: %v", err) }

err = landlock.V2.BestEffort().RestrictPaths(
landlock.RWDirs(*storeDir),

)
if err != nil { log.Fatalf("Landlock: %v", err) }

err = s.Serve(l)
if err != nil { log.Printf("http.ListenAndServe: %v", err) }

}

https://github.com/gnoack/ukuleleweb/blob/main/cmd/ukuleleweb/main.go

Program
initialization

Drop access
rights

Process
untrusted input

Unix Domain Socket!

https://github.com/gnoack/ukuleleweb/blob/main/cmd/ukuleleweb/main.go

Example: Play with the go-landlock example tool

gnoack:~$ go install github.com/landlock-lsm/go-landlock/cmd/landlock-restrict@latest
gnoack:~$ export HOME=$(mktemp --directory -t tmphome-XXXXXXX)
gnoack:/home/gnoack$ export TMPDIR=$HOME/.localtmp
gnoack:/home/gnoack$ mkdir -p $TMPDIR
gnoack:/home/gnoack$ cd
gnoack:~$ landlock-restrict -ro /usr /lib /etc -rw "${HOME}" /dev -- /bin/bash
[gnoack@nuc ~]$ ls
[gnoack@nuc ~]$ pwd
/tmp/tmphome-zMtxO01
[gnoack@nuc ~]$ id
uid=1000(gnoack) gid=1000(gnoack) groups=1000(gnoack),962(docker)
[gnoack@nuc ~]$ ls ..
ls: cannot open directory '..': Permission denied
[gnoack@nuc ~]$

Current Limitations

Current limitations

Some small things that Landlocked processes can never do:

● No manipulation of FS topology (i.e. mounting, pivot_root)
● NO_NEW_PRIVS flag: (i.e. executing suid root binaries)
● Restricted use of ptrace() (debugging other processes)

Current Limitations

● Landlock is in development.
● Is not able to restrict all file operations yet
● But it’s already limiting the most common ones :)

What is restrictable? (V1)

What is restrictable? (V2)

(also compare https://docs.google.com/document/d/1SkFpl_Xxyl4E6G2uYIlzL0gY2PFo-Nl8ikblLvnpvlU/edit#)

https://docs.google.com/document/d/1SkFpl_Xxyl4E6G2uYIlzL0gY2PFo-Nl8ikblLvnpvlU/edit#

What is restrictable? (the future)

+ Networking support?

V3+?
HIGHLY SPECULATIVE

HIGHLY SPECULATIVE

HIGHLY
SPECULATIVE

Key Point

Please try it out!

err := landlock.V2.BestEffort().RestrictPaths(

 landlock.RODirs("/usr", "/bin"),

 landlock.RWDirs("/tmp"),

)

I would ❤ to hear your feedback

Landlock mailing list:

● https://lore.kernel.org/landlock/
● Subscribe: landlock+subscribe@lists.linux.dev

Or to my own email:

● gnoack3000@gmail.com

PGP: 7F02 BDCC 6157 6E11 1A87
 9BD1 1C62 9E5A F9E8 CDA1

https://lore.kernel.org/landlock/
mailto:landlock+subscribe@lists.linux.dev
mailto:gnoack3000@gmail.com

Thank you!

Links

Go-Landlock:

● Source: https://github.com/landlock-lsm/go-landlock
● Docs: https://pkg.go.dev/github.com/landlock-lsm/go-landlock/landlock

Landlock Linux Security Module:

● https://landlock.io/
● Kernel docs: https://docs.kernel.org/userspace-api/landlock.html

This talk: https://blog.gnoack.org/talks/go-landlock

https://github.com/landlock-lsm/go-landlock
https://pkg.go.dev/github.com/landlock-lsm/go-landlock/landlock
https://landlock.io/
https://docs.kernel.org/userspace-api/landlock.html
https://blog.gnoack.org/talks/go-landlock

Questions

Bonus Slides

Go-Landlock Implementation

Architecture

Userspace
Go program

Linux kernel

System calls

Landlock
Linux Security
Module

System
call impl

Check
whether
permitted

Go-landlock library

Enable
Landlock for
the calling

thread

Initialization

System
call impl

Drop rights Process untrusted input

How does Landlock get enabled?

● Create a Landlock ruleset file descriptor
● For each path we want to use:

○ Open path with O_PATH
○ Add path and its allowed access rights to landlock ruleset

● Enforce Landlock ruleset on the current thread😱

Pop quiz: How many Goroutines are running here?

func main() {

 err := landlock.V2.BestEffort().RestrictPaths()
 // …
 callSomeFunc()
}

… and how many OS threads?

Answer: Too many!
The Go runtime already starts goroutines before main() 😱

syscall.AllThreadsSyscall to the rescue

syscall.AllThreadsSyscall(
 SYS_LANDLOCK_RESTRICT_SELF,
 uintptr(rulesetFd), uintptr(flags), 0)

A helper exposed by the runtime:

● Invokes a system call on each OS Thread managed by the runtime
● Expects that all syscalls return the same error

Works for Go! \o/ 😱But not
for cgo

Libpsx to the rescue

● Part of libcap project
● Some syscalls are just thread-only

So…

● Learn about identity of all threads: intercept pthreads with a linker hack
● Invoke syscall on all OS threads:

○ Register a special signal handler under an unused(!) signal number for all threads
○ Signal all threads, so that they’ll execute the syscall from that signal handler
○ Collect results from threads through global variable

https://sites.google.com/site/fullycapable/who-ordered-libpsx explains it in detail

https://sites.google.com/site/fullycapable/who-ordered-libpsx

The upside: This sounds more horrible than it is

● The other main user of this implementation technique:

Glibc
● You are already relying on this approach today…

Testing learnings…

● Needed to create subprocesses to run the actual tests
○ Landlock policies do not play nicely with the test framework

● It pays off to run Go tests in qemu under different kernels
○ florianl’s bluebox framework has helped to get this working

https://github.com/florianl/bluebox

Other Linux Sandboxing technology

Seccomp-BPF

● Unprivileged :)
● Install a “firewall” for system calls to be used later on

○ System call filter based on syscall number and (register) arguments
○ Requires to write BPF bytecode or to use larger libraries

● The list of system calls is not static
○ Differs between architectures
○ Differs between kernel versions
○ As of 5.19, 363 syscalls for x86_64, 352 syscalls for x86
○ Difficult to maintain an up to date list as a side project
○ Libraries do not usually give guarantees about the system calls they use

● Users: Chromium, OpenSSH, Firefox, Tor, some container software…
● https://blog.gnoack.org/post/pledge-on-linux/

https://blog.gnoack.org/post/pledge-on-linux/

Mount namespaces

● unshare(CLONE_NEWNS)
● Requires CAP_SYS_ADMIN (you need to be root-ish)
● You can acquire CAP_SYS_ADMIN with clone(..., CLONE_NEWUSER)

○ Can only be done at program execution boundary

● Process environment will be different than you’d expect, it’s not very
transparent to the program being sandboxed.

Same goes for most other namespaces (network, pid, ipc, …)

AppArmor, SELinux, SMACK, TOMOYO

● Are also Linux Security Modules
● Sandboxing “from the outside” (more coarse)
● System administrator defines execution policies
● Inconsistent availability. Ubuntu uses AppArmor, RedHat uses SELinux.
● Enabling both AppArmor and SELinux in parallel (“LSM stacking”) is work in

progress

Various command line tools, firejail and friends

● Usually require root
○ Escalating privileges to drop privileges…?
○ Increase of TCB

● These build on combinations of various namespaces and more complicated
seccomp mechanisms

